Advances in Wireless Electronic Access Control

In the beginning, there were the battery operated electromechanical locks. You entered a code into the keypad and if the code was correct, the lock unlocked, permitting retraction of the latch bolt. Over time, additional credentials were introduced...


To expand the range of a wireless network, wireless repeaters can be strategically placed to enlarge the gateway’s signal area in order to reach around barriers or door at a greater distance. A wireless repeater receives and retransmits the signal, so the signal can cover longer distances or distances that have signal obstacles such as reinforced concrete and large metallic objects.

Note: Wireless devices connected through wireless repeaters can operate at a level of decreased efficiency. This may or may not have an effect on the overall operation of the locks.

Two styles of wireless locks have evolved - complete electromechanical locks and components that are mounted onto standard mortise locks. Electromechanical locks have different configurations. Several different manufacturers’ product photos appear in this article including Alarm Lock Networx locks, Sargent Profile Series v.N2 and Kaba E-Plex Wireless lock. The latest SimonsVoss wireless networked lock, the SV1C, looks like a mechanical cylindrical lock with wireless access control built in.

The SimonsVoss digital wireless electronic SV1C lock is capable of supporting up to 64,000 users, has a 3,000-transaction audit trail and a 150,000-operation battery life. The SV1C is a lock capable of working standalone, as part of a real-time network or as part of a virtual network. The SimonsVossSV1C installs into standard door prep.

Mortise cylinder and trim-based wireless network components provide the functionality to control access. A variation on the standard key-in-lever and mortise lock is the wireless locking technology being installed into the exterior trim. For example, Salto XS4 Series trim-based electronics can be installed onto doors equipped with ANSI spec mortise lock bodies.

Most wireless network locks are battery operated or have the ability to operate on hardwire power. A battery-powered lock must operate with a specific amount of “sleep time” or the batteries would be consumed within a short time period. This “sleep time” is when the lock is not active. This time is usually adjustable. The longer the “sleep time”, the longer the battery life. During “sleep time,” locks do not accept most programming and operational commands. Hardwired locks do not require “sleep time.” Some manufacturers have a secondary wakeup protocol that actives communication enabling the locks to receive a “lockdown” command in case of an emergency during “sleep time.”

When an electromechanical lock awakes, it can send and receive packets of information that keep the lock and the system up-to-date. When a lock is awake, interaction with the system takes place. Awake time can be multiple times per minute or once or twice a day.

Depending upon the manufacturer, the wireless network accommodates up to a specified number of wireless networked locks or locking devices.

Depending upon the needs and practicalities, many facilities incorporate both wired and wireless locking devices into a single network. For example, a large facility that has both exterior and interior access control requirements can use wired network locking devices on the exterior doors and wireless networked locking devices on the interior doors.

Schlage AD-Series electrified locks have a plug-in modular electronic platform containing a reader module and a communication module. The existing modules can be removed and different modules installed, reconfiguring the lock without having to replace the entire lock. The AD-Series configurations can include manually program, standalone or networked communications with wired or wireless locks. Locks can be equipped with one, two or three credential readers.

Installation

Test the wireless system’s design prior to installation of any locks. A reinforced concrete or metal wall can obstruct a signal. A wireless test kit can test the operating frequency and signal environment in order to determine communication strength for wireless applications. Knowing the locations for the locks and using a test kit can make the placement of the gateway and/or the need and placement of repeaters most efficient.

The Salto RF Kit is comprised of a transmitting and receiving device that operates on 802.15.04, the communication protocol that Salto wireless products use. The TESTER transmits an RF test signal and the Device Under Test (DUT) is designed to receive the test signal. The TESTER should be located in the exact location for the gateway or repeater.

We Recommend